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Abstract 

Improving the estimates of CO2 sources and sinks over India through inverse methods calls for a comprehensive 

atmospheric monitoring system involving atmospheric transport models that realistically account for 15	
atmospheric CO2 variability along with good coverage of ground-based monitoring stations. This study 

investigates the importance of representing fine-scale variability of atmospheric CO2 in models for the optimal 

use of observations through inverse modelling. The unresolved variability of atmospheric CO2 in coarse models 

is quantified by using WRF-Chem simulations at a spatial resolution of 10 km × 10 km. We show that the 

representation errors due to unresolved variability in the coarse model with a horizontal resolution of one degree 20	
(~ 100 km) are considerable (median values of 1.5 ppm and 0.4 ppm for the surface and column CO2, 
respectively) compared to the measurement errors. The monthly averaged surface representation error reaches 

up to ~5 ppm, which is comparable to a quarter to half of the magnitude of seasonal variability. Representation 

error shows a strong dependence on multiple factors such as time of the day, season, terrain heterogeneity, and 

changes in meteorology and surface fluxes. By employing a first-order inverse modelling scheme using pseudo 25	
observations from nine tall tower sites over India, we show that the Net Ecosystem Exchange (NEE) flux 

uncertainty solely due to unresolved variability is in the range of 3.1 to 10.3% of the total NEE of the region. By 

estimating the representation error and its impact on flux estimations during different seasons, we emphasize the 

need for taking account of fine-scale CO2 variability in models over the Indian subcontinent to better understand 

processes regulating CO2 sources and sinks. The efficacy of a simple parameterization scheme is further 30	
demonstrated to capture these unresolved variations in coarse models. 

1 Introduction 

Accurate assessment of sources and sinks of CO2 is essential in planning and implementing mitigation strategies 

for greenhouse gas emissions and associated climate change. However, estimations of CO2 fluxes contain 

significant uncertainties, which increase even more with finer spatial scales such as those required for the 35	
climate change mitigation policies at regional and national levels (e.g., Ciais et al., 2014; Li et al., 2016; 

Cervarich et al., 2016). By using atmospheric CO2 concentration measurements, the CO2 fluxes can be estimated 

by a multi-constrained observation-modelling approach, often referred to as top-down approach or inverse 
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modelling (Enting, 2002). For about two decades, these top-down approaches have been widely used to 

understand the modifications in the carbon cycle through natural and anthropogenic induced environmental 40	
changes (Bousquet, 2000; Schimel et al., 2001; Rödenbeck et al., 2003; Patra et al., 2005). In addition to the 

observations, the inverse modelling system makes use of an atmospheric transport model (forward model), 

which determines the distribution of CO2 concentration. Thereby, the inverse optimization approach derives the 

surface fluxes that are consistent with measured concentration. The United Nations Framework Convention on 

Climate Change (UNFCCC) has acknowledged the increasing capability of inverse modelling to systematically 45	
monitor greenhouse gas (GHG) concentrations (Bergamaschi et al., 2018). 

Most of the inverse modelling systems rely on global atmospheric transport models with coarse horizontal 

resolution (often greater than one degree) (Rödenbeck et al., 2003; Peters et al., 2007; Rödenbeck et al., 2018a, 

b; Inness et al., 2019). These global data assimilation systems play an important role in studying continental or 

sub-continental fluxes at annual or sub-annual scales. However, regional estimation of fluxes using global 50	
models is hindered by the inability of these transport models to represent the observed CO2 variability. The 

observed variability, as seen from the spatial and temporal distribution of atmospheric CO2, is highly correlated 

with the space and time scales of weather systems (Parazoo et al., 2011). This explains the presence of large 

model-data mismatches in regions where mesoscale circulation is predominant (Ahmadov et al., 2007). Wind 

speed, wind direction, and height of the planetary boundary layer (PBL) are the critical variables that determine 55	
the atmospheric CO2 variability. Strong wind normalizes other small-scale variations in observed concentration 

due to mixing, and the predictability can be higher during these conditions (Sarrat et al., 2007). The height of the 

PBL is an essential variable since the atmospheric CO2 is subjected to rapid mixing up to this altitude. Hence, 

for a given location with a negative gradient in CO2 vertical distribution, an overestimation of PBL height leads 

to an underestimation of CO2 concentration and vice-versa (Gerbig et al., 2008).  60	

Another important variable that impacts the CO2 variability is the heterogeneous topography. Variations in 

topography influence the transport of the tracers. When the small-scale orographic details are not adequately 

represented in the models, they can lead to representation errors in CO2 simulations as large as 3 ppm at scales 

of 100 km (Tolk et al., 2008; Pillai et al., 2010). Horizontal gradients in CO2 concentrations can go up to values 

of 30 ppm within a spatial scale of 200 km, depending on the land surface heterogeneity (van der Molen and 65	
Dolman, 2007). Further, variations in land use patterns between neighbouring regions can cause considerable 

variability in the CO2 surface fluxes. Thus, a proper representation of land use patterns is also important in terms 

of simulating CO2 variability. Previous studies based on airborne measurements reported that transport models 

need a spatial resolution smaller than 30 km to be able to represent CO2 spatial variability in the continental 

boundary layer (Gerbig et al., 2003). Significant efforts have been invested in deriving fluxes by taking into 70	
account these fine-scale variations (e.g., Gerbig et al., 2003; Lauvaux et al., 2009a; Carouge et al., 2010; Pillai et 

al., 2011, 2012; Broquet et al., 2013) over North American and Eurasian domains in the past decade. However, 

there still exists lower confidence in estimates over the regions, where there is a lack of both advanced 

modelling systems at relevant spatio-temporal resolutions and good coverage of ground-based monitoring 

stations. 75	

In the context of the Indian sub-continent, the inverse-based estimation of fluxes at fine scales is essentially 

new; hence many questions remain. A number of monitoring sites measuring atmospheric greenhouse gases 
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have become available in India during the last decade (Tiwari et al., 2011; Lin et al., 2015, Nomura et al., 2021). 

Aside from the ongoing progress in augmenting observational data streams, it remains challenging to assimilate 

these data for deducing process-specific information effectively (e.g., McKain et al., 2012; Bréon et al., 2015; 80	
Pillai et al., 2016). The limitation of coarse global models in representing observations over the Indian 

subcontinent is reflected in the analysis made by Patra et al. (2011). 

The seasonally reversing South Asian monsoon system is a prominent meteorological phenomenon affecting the 

Indian subcontinent, which is also expected to influence the terrestrial-atmosphere flux exchanges. Various 

studies have demonstrated the role of Indian monsoon circulations on regional atmospheric transport by strong 85	
south westerly winds during the summer monsoon (June to September) and by north easterly winds during the 

winter monsoon (October to November) (e.g., Goswami and Xavier, 2005; Krishnamurthy and Shukla, 2007). 

Monsoon convection transports the boundary layer air into the upper troposphere. Subsequently, air parcels are 

slowly uplifted by diabatic heating to higher altitudes (e.g., Vogel et al., 2019). An accurate representation of 

convective vertical transport is very challenging and an important source of uncertainty in current transport 90	
models (Willetts et al., 2016). Note that the Asian summer monsoon anticyclone (ASMA) active during the 

Indian summer monsoon period plays a key role in uplifting trace gases to the upper troposphere and lower 

stratosphere (e.g., Park et al., 2007). Moreover, a significant component of flux variations can arise from 

biospheric fluxes (Schimel et al., 2014), which is influenced by variables such as rainfall, availability of 

radiation, and temperature (Chen et al., 2019). Several studies showed that the monsoon system substantially 95	
impacts vegetation growth, generating distinct spatio-temporal patterns of the biogenic fluxes (e.g., Gadgil, 

2003; Valsala and Maksyutov, 2013, Ravi Kumar et al., 2016). It is noteworthy that the cropping patterns over 

India have a strong dependence on seasons and are mainly determined by dry and wet seasons for nearly 65 to 

70 % of the country’s area except over north-eastern and south-western (Western Ghats) regions of India. In 

India, wet season crops (Kharif crops cultivated from June to November) including Rice, Millets, and Maize 100	
mainly depend on monsoon rain. Dry season crops (Rabi crops, e.g. Wheat, Barley, and Mustard, cultivated 

from November to April,) are less water-dependent and primarily rely on irrigation (DAC/MA 2015). Therefore, 

employing a higher resolution modelling over the Indian subcontinent is desirable to better account for fine-

scale variations generated by both mesoscale transport processes and surface flux patterns. 

This study focuses on accounting for unresolved sub-grid scale variability when employing current generation 105	
global models. Assimilation of observations in an inverse framework requires the characterization of these error 

structures at relevant scales that can be utilized to retrieve source-sink distribution over India. The main 

objectives of this paper are to describe and quantify the expected spatiotemporal variability of atmospheric CO2 

that is not resolved by the current generation global models, quantify to what extent these variations cause 

uncertainty in flux estimations, and assess how these uncertainties can be minimized by modelling the sub-grid 110	
variations in the global models. Specifically, we address the following questions: 1) how good is the level of 

agreement among global transport models that are used in current generation inversion systems for predicting 

atmospheric CO2 concentrations over the Indian subcontinent? 2) how large are the variations of atmospheric 

CO2 that are unresolved by global and regional models, which operate at different spatial scales from 4°× 4°  to 

0.5°× 0.5° ? 3) what is the role of seasonal changes on generating different patterns in these sub-grid variations 115	
of CO2? 4) how much is the uncertainty in the inverse-based flux estimation caused by these unresolved 
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variations in the coarse models when utilizing a given network of surface observations over the domain? 5) how 

effectively can we capture the key aspects of the variability and account for it in flux estimations? Information 

from observations can be better utilized if we improve the atmospheric transport models to resolve the observed 

variability as accurately as possible. As a result, the data assimilation system gains significantly (e.g. with 120	
increasing weights on observations and performing minimal data filtering), from this for improving the flux 

estimates.  

In this article, we present results based on the analyses of high-resolution simulations at a spatial resolution of 

10 km × 10 km for the months of July and November 2017. The year 2017 was characterized by neutral Indian 

Ocean Dipole conditions over the Indian Ocean with the beginning of a mild La Nina over the Pacific by the end 125	
of the year (NOAA/ESRL, 2022a, b). The month of July represents a monsoon period when the biospheric 

activity is significant together with atmospheric convection activities. July is also characterized by strong low-

pressure system activity over the Bay of Bengal, which results in large rainfall over central India 

(Krishnamurthy and Ajayamohan, 2010). On the other hand, the month of November is more representative of 

post-monsoon wintertime over the Indian subcontinent. We quantify the sub-grid variability using these high-130	
resolution simulations. By designing a pseudo surface observation network over the domain, we investigate the 

impact of these unresolved variations on the regional flux estimations and assess how a simple parameterization 

scheme can help in reducing these errors in the global model. To our knowledge, there is no comprehensive 

published study of this kind over the Indian subcontinent until now assessing the magnitude and impact of 

temporal and spatial variability exhibited by atmospheric CO2.  135	

The outline of the paper (see Supplementary Fig. S1) is as follows: Section 2 describes our modelling system, 

data and methods used for estimating the sub-grid scale variability of CO2. In Sect. 3, we present the global 

model comparisons and spatial variability analysis, highlighting potential modelling difficulties for estimating 

the CO2 budget over India. We provide a quantification of the expected sub-grid scale variability based on our 

high-resolution simulations, as well as its impact on regional flux estimations. Finally, we discuss the 140	
implications of our findings in Sect. 4, suggesting the ways forward to yield an improved estimation of 

CO2 budgets over India. 

 

2 Data & Methodology 

We have performed a series of analyses using the simulations generated by our high-resolution modelling 145	
system, which is described in Sect. 2.1. Additionally, we have utilized optimized CO2 products at global scales 

to provide a more comprehensive overview of the typical mismatch between the existing model simulations over 

the Indian subcontinent at monthly and annual scales (Sect. 2.2). These global model outputs are derived from 

inverse model simulations, which estimate the source-sink distributions of CO2 and then generate three-

dimensional CO2 concentration fields that are consistent with the optimized posterior fluxes. In this study, the 150	
high-resolution simulations are used to quantify the sub-grid scale variability of CO2 that cannot be captured by 

the global models due to their coarse resolution. For this quantification of the spatial variability, we use the 

representation error approach described in Sect. 2.3. An observation system simulation experiment (OSSE) 
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using high-resolution CO2 simulations has been carried out to estimate the impact of the derived sub-grid scale 

variations on flux estimations over India via inverse optimization (see Sect. 2.4). 155	

2.1 WRF-Chem GHG Modelling System 

We use the modelling system WRF-Chem GHG in which the Weather Research and Forecasting model (WRF) 

version 3.9.1.1 (Skamarock et al., 2008) is coupled with the greenhouse gas module (WRF-Chem-GHG, Beck et 

al., 2011), implemented as part of the WRF-Chem distribution (WRF-Chem, Grell et al., 2005).  For simulating 

the atmospheric transport, the model uses fully compressible Eulerian non-hydrostatic equations on Arakawa C- 160	
staggered grid, conserving mass, momentum and scalars (Skamarock et al., 2008). In the WRF-Chem GHG 

(hereafter referred as WRF-GHG), we use the passive tracer chemistry option to simulate changes in CO2 

mixing ratios associated with surface fluxes and atmospheric transport. We utilize a biospheric model and 

emission inventory data to simulate atmospheric CO2 enhancements associated with biogenic and emission 

fluxes as described in Sect. 2.1.1 and 2.1.2. Table. 1 summarizes the model configuration, including physics 165	
parameterizations and input data used in this study. 

The model domain covers a region spanning from 65°E to 100°E and 5°N to 40°N, configured in a Lambert 

conformal conic (LCC) projection with 307 × 407 grid points. The spatial resolution of the grid is 10 km × 10 

km, and the model time-step is 60 s. We have used model output with a temporal resolution of 1 hour for this 

study. The simulations are performed using 39 vertical levels with the model top at 50 hPa and 10 levels within 170	
the lowest 2 km. WRF-GHG simulations are performed for the entire July and November 2017. Implementation 

of the WRF-GHG system over the Indian subcontinent enables us to customize it according to the domain 

features and build a state-of-the-art modelling system, which eventually estimates CO2 fluxes through regional 

inverse systems. The potential of the WRF-GHG model in simulating fine-scale spatial variability was also 

established in previous studies (Ahmadov et al., 2009; Pillai et al., 2011; Park et al., 2018). 175	

2.1.1 Representation of biospheric fluxes  

We use the Vegetation Photosynthesis and Respiration Model (VPRM) in the modelling system to calculate Net 

Ecosystem Exchange (NEE) representing the biospheric fluxes (Mahadevan et al., 2008). VPRM is a diagnostic 

biosphere model, which utilizes remote sensing products: Enhanced Vegetation Index (EVI) and Land Surface 

Water Index (LSWI) derived from reflectance data of the Moderate resolution Imaging Spectroradiometer 180	
(MODIS) as well as meteorological data: solar radiation and air temperature. In this study, these hourly NEE 

calculations are performed within WRF-GHG, simultaneously with the meteorology simulations in which NEE 

is calculated as a sum of gross ecosystem exchange (GEE) and ecosystem respiration (Reco). VPRM, in this case, 

uses the meteorological data provided by WRF-GHG. VPRM uses the SYNMAP vegetation classification 

(using the tile approach) (Jung et al., 2006) as well as EVI and LSWI from MODIS surface reflectance data at a 185	
resolution of 1 km and 8 days. We aggregate these indices specific for different vegetation types onto the LCC 

projection for the entire domain at the model’s spatial resolution. A number of studies have used VPRM for 

other regions around the world in which derived NEE shows good prediction skills for hourly to monthly 

timescales (Ahmadov et al., 2009; Pillai et al., 2011; Liu et al., 2018; Park et al., 2018).   

2.1.2 Representation of emission fluxes 190	
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Anthropogenic CO2 emission fluxes are prescribed from the Emission Database for Global Atmospheric 

Research (EDGAR) dataset, version 6.0, provided at a horizontal resolution of 0.1° ×  0.1° (Crippa et al., 2021). 

We disaggregate the available annual emission data into hourly emissions using the temporal distribution CO2 

profiles (Steinbach et al., 2011; Kretschmer et al., 2014). To represent biomass burning emission, we have used 

data from the Global Fire Assimilation System (GFAS) with a spatial resolution of 0.1° ×  0.1° and a temporal 195	
resolution of one day. GFAS is based on satellite data, which provides the fire emission by assimilating fire 

radiative power (FRP) observations from MODIS instruments (Kaiser et al., 2012). All these flux data are 

gridded and projected to WRF-GHG’s model domain. 

2.1.3 Initial and boundary conditions 

Meteorological and chemical initial and boundary conditions are required in WRF-GHG to account for the 200	
initial state and inflow or background flow. The initial and lateral boundary conditions for the meteorological 

variables, including horizontal wind components, pressure, specific humidity, sea surface temperature (SST), 

and the necessary surface initialization fields are obtained from the ERA5 reanalysis dataset of the European 

Centre for Medium-Range Weather Forecasts (ECMWF), extracted at a horizontal resolution of 25 km and a 

temporal resolution of 1 hour (Hersbach et al., 2020). The initial and lateral boundary conditions of CO2 tracers 205	
are obtained from the Copernicus Atmosphere Monitoring Service (CAMS, 2.2.4) products (Massart et al., 

2016; Agusti-Panareda et al., 2019). We have used the dry air mole fractions of CO2 from the CAMS-GHG, 

which has a temporal resolution of 6 hour and horizontal resolution of 0.5° × 0.5° with 137 vertical levels. Note 

that there exists a CAMS product at 9 km × 9 km resolution, which is in the developmental phase and not yet 

available to the general public (personal contact: Anna.Agusti-Panareda@ecmwf.int).  210	

We have utilized a simulation strategy to update the initial meteorological conditions for taking advantage of 

assimilated meteorological fields from ECMWF. The model is reinitialized each day with ECMWF assimilated 

data at the model starting time of 12.00 UTC (day+0) and runs for 30 hours until 18:00 UTC of the next day 

(day+1). The first six hours are considered for meteorological spin-up, and the remaining 24 hours (from 

day+0,18:00 UTC to day+1, 18:00 UTC) are used for the analysis. The initialization of CO2 is done at the 215	
beginning of the first hour of model simulation, which is 00:00 UTC (e.g., Ahmadov et al., 2012; Pillai et al., 

2011). 

2.2 Global model products 

We have used optimized products at global scales to examine the differences in the representation of CO2 

variability over the Indian subcontinent at monthly and annual scales. Four global inverse modelling products - 220	
CarbonTracker, CarboScope, LSCE v18r3 and LSCE FT18r1- available during the year 2017 are used for our 

analysis (See Table. 2 for more details). The LSCE model version v18r3 (hereafter LSCE) utilizes surface 

observations for the optimization, and the model version FT18r1 (hereafter LSCE FT) uses satellite retrievals 

from the Orbiting Carbon Observatory (OCO-2) for the optimization of CO2 fluxes (Chevallier et al., 2005; 

Chevallier et al., 2010; Chevallier, 2013). All these above models differ in terms of the model formulations and 225	
configuration (e.g., transport and the employed inversion methodology), observational datasets that were 

assimilated (e.g., data from surface monitoring stations, aircraft missions, ship cruises, AirCore balloon 

soundings, and satellite’s total column retrievals), prior datasets, and spatiotemporal resolutions. None of these 
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products used ground-based observations from the Indian subcontinent for their optimization, which raises 

concerns about the reliability of the optimized flux estimations over the region. Hence, it can be assumed that a 230	
part of the inter-model differences in predicting the variability is related to the paucity of CO2 observations over 

the region. To represent the daytime, we have used the concentration fields for the local time ranging from 

11:30 to 16:30 from all these models for the analysis.  

2.3 Quantification of spatial variability 

For quantifying the spatial variability due to sub-grid scale processes that cannot be resolved by the coarse 235	
resolution models, we follow the approach as described in Pillai et al. (2010). The term ‘representation error’ 

indicates the mismatch between the scales of model simulations and observations collected (Pillai et al., 2010; 

Janjić et al., 2017). In other words, the representation errors arise due to unresolved scales, which could not be 

captured by the model. Here we calculate the representation errors in the coarse resolution models, which can be 

resolved by implementing a high-resolution model at 10 km resolution. It is assumed that the high-resolution 240	
simulation captures the majority of the sub-grid scale variability even though it cannot be expected to resolve all 

observed variability. Most of the current global model simulations are performed at coarse resolutions of several 

degrees. But with the recent advancement in computational capacity and numerical techniques, a horizontal 

resolution of 1° × 1° is quite likely achievable for the global data assimilation systems. For estimating the 

representation error in a coarse model with a typical spatial resolution of 1° × 1°, we have calculated the 245	
standard deviation of CO2 dry air mole fraction simulated by the WRF-GHG model within the coarse grid boxes 

of 1° × 1° as follows: 

 𝜎𝐶𝑂2(tot) =
1

𝑛−1
(𝑛

𝑗=1 𝑚𝑗 − 𝑚)2                                                                                                (1)  

where 𝑚 =
1

𝑛
𝑚𝑗

𝑛
𝑗=1  

𝑛 is the number of 10 km boxes inside the coarser grid cell of 1° × 1°;  𝑚 is the CO2 dry air mole fraction 250	
corresponding to 10 km boxes; and 𝑚 is the average within the coarser grid cell. So, the estimated values 

represent the sub-grid scale variability within the coarse model grid cell with a horizontal resolution of 1° × 1°. 

The representation errors are calculated at corresponding vertical model levels to represent the impact of surface 

influence and mesoscale transport adequately as predicted by the high-resolution model. As mentioned before, 

we assume that the high-resolution simulations represent the realistic distribution of CO2. Further, we assume 255	
that the coarse resolution model also has a terrain-following vertical coordinate system and also has the same 

vertical grid spacing of high-resolution model. As the space-borne instruments can also make the mixing ratio 

measurements, we extend the analysis to column-averaged dry air mole fraction (XCO2) as measured by the 

satellite instrument. i.e., 𝑚 represents either CO2 at a given model level or XCO2. In order to assess the 

dependence of representation error on the horizontal resolution of the employed model, we have computed 260	
representation error for multiple resolutions ranging from 0.5° × 0.5° to 4° × 4°, in addition to 1° × 1°, which 

would encompass the resolutions of both present and near-future global inverse modelling systems. 

The surface representation errors are calculated using the model simulations from the second model level (mean 

height is ~200 m from sea level) to avoid the inconsistency that can be generated from inputting emission fluxes 
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at the first model level. Representation errors are calculated separately for daytime (11:30 to 16:30 local time) 265	
and nighttime (23:30 to 4:30 local time) to account for the difference in the sub-grid scale process during these 

times. The representation error presented in Eq. (1) varies from one model time step to the next. In order to 

obtain a typical (average) representation error, we compute the monthly average representation error (𝜎𝐶𝑂2) 

using Eq. (2). 

𝜎𝐶𝑂2 =  
1

𝑇
∑𝑡=1
𝑇 𝜎𝐶𝑂2(tot)                                                                                                                   (2) 270	

where T is the total number of simulations in a month during daytime or nighttime. Further, we have calculated 

the representation error (𝜎𝐶𝑂2(𝑚𝑜𝑛)) using Eq. (3), which only contain systematic component of representation 

error that can provide important constraints for inversions using both ground-based and satellite observations 

over India.   

𝜎𝐶𝑂2(𝑚𝑜𝑛) =  
1

𝑛−1
(𝑛

𝑗=1 𝑀𝑗 − 𝑀)2                                                                                            (3) 275	

where 𝑀 =
1

𝑛
𝑀𝑗

𝑛
𝑗=1  

𝑛 is the number of 10 km boxes inside the coarser grid cell of 1° × 1°;  𝑀𝑗 is the monthly averaged CO2 dry air 

mole fraction at a 10 km spatial scale; and 𝑀 is the corresponding average within the coarser grid cell of 1°. The 

difference between Eq. (1) and Eq. (3) is that we use monthly averaged CO2 concentration values in Eq. (3) 

instead of hourly values as in Eq. (1). Both July and November are used to understand the differences in the 280	
variability during summer and winter.   

Due to the paucity of adequate ground-level observations over India, satellite observations play an essential role 

in the estimation of CO2 fluxes. Satellite observations can provide column average CO2 (XCO2) concentration 

with a precision of 1 to 1.5 ppm (O’Dell et al., 2012; Wunch et al., 2017; Liang et al., 2017). In order to utilize 

these satellite observations, the transport models being used in the inverse estimation must be highly accurate. 285	
Since satellite footprints are smaller (~ 2 – 20 km2) than the current model grid size (> 100 km), using these 

measurements for optimization via inverse modelling introduces spatial representation errors and associated 

uncertainties in the inferred fluxes. Note that the spatial biases of a few tenths of a ppm in column-averaged 

CO2 can potentially alter even the annual sub-continental fluxes in the range of tenths of a gigaton of carbon 

fluxes (Chevallier et al., 2007, Miller et al., 2007 and Chevallier et al., 2010). To quantify these systematic 290	
transport errors when representing satellite measurements in inverse models, we calculate the spatial 

representation errors for XCO2 that coarse inverse modelling would suffer from using highly precise and 

accurate satellite measurements.  

We have selected monsoon (July) and post-monsoon (November) periods for our analysis to identify the 

seasonal changes in the sub-grid variability over India. In July, many low-pressure systems were active in the 295	
monsoon trough region (IMD weather reports, https://mausam.imd.gov.in). In general, tropical cyclones in the 

Asian monsoon region can cause fast uplift of air masses into the upper troposphere and lower stratosphere (e.g. 
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Li et al., 2021), which may increase the modelling error due to the misrepresentation of the associated 

mesoscale activity. The presence of enhanced biospheric activity during July can reduce the CO2 concentration 

in the lower troposphere. Also, the strong vertical and horizontal mixing due to the monsoon circulation dilutes 300	
the CO2 concentration in the atmosphere during July compared to November. The convective activity associated 

with the Indian summer monsoon was absent during November, however the convection caused by synoptic 

systems such as tropical cyclones was still present. Such a low-pressure system activity was found over the Bay 

of Bengal and over the Lakshadweep area (≈ 8° N, 74° E) from 22nd November onwards. One of these low-

pressure systems in the Bay of Bengal further developed and intensified as a deep depression and moved to the 305	
southeast Arabian Sea and evolved into a severe cyclonic storm (Ockhi) by 30th November.  

2.4 Estimation of representation error induced flux uncertainty using pseudo surface measurements 

In order to quantify the impact of representation errors on flux estimations when utilizing surface measurements, 

we have devised the following strategy. We used nine CO2 surface monitoring sites representing various 

geographical regions in India (Fig. 1). Not all these observation stations are currently fully operational or have 310	
continuous measurements. We have performed an observation system simulation experiment (OSSE) using 

high-resolution CO2 simulations generated by the WRF-GHG model for each of these stations. We focus on the 

biospheric flux component, NEE. The simulated values of coarse models to compare with the observations are 

obtained from the nine grid cells of the coarse model covering these sites. The pseudo observations for these 

sites correspond to the values simulated by the WRF-GHG model at one of the fine grid cells contained in one 315	
cell of the coarse model. Since there are 100 fine grid cells per coarse grid cell, 100 different time series are 

generated and 100 corresponding inversions are performed to obtain robust results. For deducing the 

contribution of the representation error to the biospheric flux uncertainty, we have taken the following 

assumptions: 1) the hourly WRF-GHG simulations at 10 km (~ 0.1°) spatial scale represents actual variations in 

CO2 mixing ratios of the measurement site, 2) there are no model or observation errors other than representation 320	
error, 3) the model captures the spatial and temporal patterns of fluxes correctly, and 4) the contribution from 

other surface fluxes and background mixing ratio (in ppm) are known. As a first-order simplification for the 

inversion, we assume that the footprints of each observation site span a radius of 200 km around the site based 

on our analysis using the Stochastic Time-Inverted Lagrangian Model (STILT, Lin et al., 2003). STILT 

footprints indicate that 50% of the sensitivity of a site to fluxes over India is located in a region that has about 325	
the same area as a circle with a radius of 200 km. For nine stations, this footprint area covers around 35 % of the 

total area of India. The STILT is driven with ECMWF IFS (Integrated Forecasting System) meteorological 

fields and the trajectories are calculated based on 100 virtual particles that are released for each time interval 

and location. The residence time of particles in the surface layer is weighted by the atmospheric density to 

derive the footprints of each location. 330	

In our inversion set-up, we have used the hourly biospheric contribution of the atmospheric CO2 mixing ratios 

simulated by WRF-GHG over the coarse grid cell of 1° × 1° surrounding the location of each measurement site 

as OSSE observations (𝑚!,!(𝑡)). 

𝑦!,!(𝑡) ≡ 𝑚!,!(𝑡) = 𝐇!,!(t) . 𝐅 𝝀                                          (4) 
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where 𝐇 is the transport operator and 𝐅 𝝀   is the flux model in which a subset of parameters 𝝀 out of total 335	
model parameters p will be optimized in the inversion. Here, i (i =1 to 9) represents the nine observation sites 

and 𝑗 (𝑗 =1 to 100) is the number of WRF-GHG pixels inside the coarser grid cell of 1° × 1°.. 

The modelled biospheric CO2 signal (𝑚!)  for the inversion is given by: 

 𝑚!(𝑡) = 𝑚!,!(t) + 𝜺𝒊,𝒋(𝑡)                                               (5) 

The modelled values deviate from the observations by a representation error 𝜺𝒊,𝒋 𝑡 . Since the modelled values 340	
(𝑚!) correspond to the mean of the 100 fine grid cells, the simulated values at site i are given as: 

𝑚!(𝑡) =  !
!""

𝑚!,!(𝑡)!""
!                                     (6) 

  

Here,  𝐅 𝝀  is taken as linearly dependent on 𝝀 ; hence can be expressed as  

𝐅 𝝀 = 𝚽. 𝛌                                                  (7) 345	

where  𝚽 is the biospheric flux (NEE) distribution over the region.  

In the inversion, we retrieve monthly NEE by utilizing hourly 𝑚!,!(𝑡) and 𝑚!(𝑡)  over a month. For OSSE and 

uncertainty flux estimation, we use the VPRM-derived NEE fluxes as the “true” fluxes (see Sect. 2.1.1). By this 

inverse modelling design, we require to perform 100 inversions per site, each of which uses a realization of 

representation error to estimate the corresponding realization of the resulting uncertainty in the retrieved fluxes. 350	

Both the observation and simulation vector have 6480 (=9×30×24) elements for a month having 30 days, and 

the state vector has 9 elements corresponding to scaling factors of fluxes for that month over regions around the 

9 sites (see Fig. 1). In other words, each site has been assigned with one scaling factor for NEE, and there is a 

total of 9 scaling factors for a given month. We use a unit vector 𝝀 as prior scaling factors. The prior uncertainty 

is neglected here, as the expected impact of the representation error on the retrieved fluxes is significantly 355	
smaller than typical prior uncertainties assumed in Bayesian inversions (on the order of 50% – 100% for 

biospheric fluxes). Hence neglecting this prior uncertainty does not have a large impact on our results. The 

inversion retrieves optimized scaling factors 𝝀𝒓𝒆𝒕𝒓.  

We have performed 100 inversions per site, and the scaling factors are retrieved by minimising the cost function 

for each observation station: 360	

𝐽 𝜆𝒊,! = !
!

 (𝑚!,!(t) −  𝑚!(t)𝜆𝒊,!)!!
!!!                  (8) 

where T is the number of observations for a month. Minimizing these cost functions results in an optimized 

estimate of scaling factors 𝝀𝒓𝒆𝒕𝒓, which is a vector of scaling factors with nine elements (𝝀𝒓𝒆𝒕𝒓,𝒊) for each of the 

100 inversion cases. 

By this inverse design, the deviation of posterior fluxes from the true fluxes over India is thus the uncertainty in 365	
retrieved fluxes, 𝐒𝒓𝒆𝒑 , that arises solely due to the contribution from the representation error. Standard deviation 
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of the scaling factors from these 100 inversions (𝜎𝝀𝒓𝒆𝒕𝒓  ) are used to retrieve flux uncertainty. 𝐒𝒓𝒆𝒑is obtained as 

follows:  

𝐒𝒓𝒆𝒑 = (𝑺𝝀𝒓𝒆𝒕𝒓,𝒌𝚽𝒕𝒓𝒖𝒆,𝒌)!
!!!

!                                       (9) 

where 𝚽𝒕𝒓𝒖𝒆  is the monthly VPRM biospheric flux (NEE) over the Indian region and k is the number of pixels 370	
(33141 pixels) over the Indian region. Here, 𝐒𝝀𝒓𝒆𝒕𝒓 has the dimension of Indian region at a 10 km  spatial 

resolution and is defined in such a way that all the grids (at 10 km spatial resolution) other than the grids within 

the influence region (200 km radius around the station) of each station is given with zero values (21335 pixels) 

and the grids in the influence region of each station (11806 pixels) is given with the corresponding values of 

𝜎𝝀𝒓𝒆𝒕𝒓,𝒊. This way, the approach doesn’t depend on Eq. (1) to Eq. (3), but shows the impact of difference between 375	

𝑚𝑗 and 𝑚 on retrieved fluxes. 

Any temporal correlations in the representation error are not considered for this experiment. We have performed 

the inversion separately for daytime and nighttime values to identify the impact of diurnal variations of 

representation errors on flux uncertainty. Note that by following the above inversion design and assumptions, 

there is a high likelihood of underestimating the impact of the modelling error on flux estimations since we have 380	
not considered other sources of uncertainties such as model transport uncertainty and inappropriate prior 

assumptions. Thus, the quantification of flux uncertainty using this approach can be inferred as the lower bound 

of the uncertainty (i.e., the minimum flux uncertainty one may expect while estimating fluxes using a model 

with a grid cell of 1°× 1° and 9 stations with the representativeness of 200 km). 

3 Results and Discussions  385	

3.1 Agreement among global models 

We first analyse the level of agreement among current-generation global transport models in simulating CO2 

concentration over the Indian subcontinent. Note that a mere agreement among the coarse models is not 

sufficient to justify the models’ performance over the region due to their plausibly large model errors in 

common and interdependency in terms of data sources. We restrict this analysis to daytime-only values since 390	
different processes control the variability of CO2 concentration at daytime and nighttime, and simulating 

nighttime variability is more complicated than the daytime (Lauvaux et al., 2009a). For a consistent comparison 

among global models, all the products are sampled at the same time for the region spanning from 67° E to 98° E 

and 7° N to 38° N. Figure 2a depicts the annual vertical profiles of CO2 concentration, showing models’ 

discrepancy in simulating the vertical gradients in concentration values including the boundary layer and the 395	
free troposphere. A notable difference is observed in the simulation of the gradient within the boundary layer. 

The magnitude and the height up to which this positive gradient is observed are different for these models. 

LSCE (both versions) has the largest positive gradient among these models (~1ppm). It shows the maximum 

concentration at around 700 m height and then a decrease in concentration. CarbonTracker also shows this 

positive gradient in the surface layers up to a height of 900 m. But the gradient is much smaller compared to the 400	
other two models. Among these four models, CarboScope does not exhibit this tendency in the lower 

atmosphere. Its concentration decreases linearly from the surface as the height increases.  
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The seasonal variability of CO2 uptake through photosynthesis, release through ecosystem respiration, and 

vertical transport is seen while analysing the monthly averaged CO2 concentration profiles over the Indian 

subcontinent (Figs. 2b and 3). Comparatively lower surface CO2 concentrations are found during months with 405	
an active biosphere (June to October) than the rest of the period, owing to the higher ecosystem productivity 

over the northern hemisphere and particularly over the Indian subcontinent in response to the availability of 

monsoon rainfall. Also, the presence of strong southwest monsoon winds from June to September may result in 

bringing CO2 depleted air from the southern hemisphere and thereby lowering the CO2 concentration over the 

domain. While comparing the seasonal maximum (May) and minimum (September) of CO2 concentrations 410	
measured at the Mauna Loa observatory (MLO) located in Hawaii, Fig. 2b shows a temporal shift of around one 

month for exhibiting seasonal maximum (April) and minimum (August) CO2 concentrations. This temporal shift 

is attributed to the differential impacts of anthropogenic and terrestrial ecosystem activities on atmospheric 

concentration as well as the long-distance transfer of atmospheric carbon dioxide to remote location (Nomura et 

al., 2021). MLO observations are generally representative of global mean CO2 due to the minimal influence of 415	
terrestrial ecosystems and anthropogenic activities at remote location. The seasonal variation of monthly 

averaged CO2 seen over the Indian subcontinent is mostly dominated by terrestrial carbon fluxes, i.e., net 

ecosystem exchange (NEE) as seen from the VPRM simulations (see Supplementary Fig. S2).    

Further, we see a CO2 vertical profile with a small vertical gradient (~0.5 ppm within an altitude range of ~500 

m to 4000 m) from June to October (Fig. 3). This is likely linked to the increased convective activities 420	
associated with the monsoon. The strong vertical gradient in the surface levels as simulated by the LSCE model 

during the monsoon period is little plausible given the strong vertical mixing expected for this convective 

period. The considerable inter-model variation in monthly averaged CO2 concentration profiles as predicted by 

different global models is problematic as it indicates significant uncertainties in flux estimations over India. A 

part of this discrepancy can come from the coarse resolution global model’s inability to represent transport 425	
processes like convection and vertical mixing, strength and distribution of anthropogenic sources and ecosystem 

activities that operate at fine scales. The extent of this unresolved variability in global models is further explored 

in Sect. 3.2. The spatial distribution of CO2 concentration shows structural differences among these models (see 

Supplementary Fig. S3), indicating a substantial knowledge gap in representing atmospheric CO2 variability 

over the Indian subcontinent, which can have severe implications for the country’s carbon budget estimations. 430	

3.2 Representation errors in global transport models 

The spatio-temporal variability of representation error and the influence of various factors in creating this 

variability are examined here. The larger the variations that are caused due to sub-grid processes within the grid 

box of 1° × 1°, the larger the representation error. The derived seasonal differences in structural patterns of the 

sub-grid variability facilitate to 1) quantify what would be typical representation errors associated with 435	
incorporating seasonally varying observations into atmospheric models 2) determine what drives the seasonality 

in sub-grid variability and ultimately 3) design a possible parameterization of representation error with a 

seasonal component in the inverse modelling framework as well as identify periods or seasons where the use of 

this parameterization would be valid to improve our estimations of CO2 fluxes. Further, the seasonal spatial 

variability analysis of column averages can provide useful information for the satellite community to gap-fill the 440	
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satellite soundings over India when large data gaps and low sounding precision on daily or monthly time scales 

are present, especially the case for monsoon periods in India.  

3.2.1 Spatio-temporal patterns 

Representation errors in the surface CO2 concentrations of a global model at a spatial resolution of 1° × 1° for 

July and November are shown in Fig. 4. The representation error at 1° × 1° spatial scale reaches values ranging 445	
from 0.5 ppm to 5 ppm, which are comparable to the magnitude of variability at hotspot emission regions or half 

of the seasonal variability of CO2 over the region (see Fig. 2b). The median representation error is 1.2 ppm at 

the surface, which is considerably larger than the measurement errors. In the case of high accuracy in situ 

measurements, the typical uncertainty for CO2 measurements is less than 0.1 ppm (Andrews et al., 2014). A 

remarkable feature is the presence of very high representation error over North-East and Western Ghats regions, 450	
where the biosphere activity is very prominent. The heterogeneous distribution of biosphere fluxes generates 

significant sub-grid scale variability that leads to high representation error. Also, we can find high representation 

error along the foothills of the Himalayas. In addition to the complex terrain, the region over the Ganges basin is 

characterized by increased anthropogenic activity, which contributes to a larger representation error surrounding 

this region. High representation error is also found in the coastal regions, ranging from 2 ppm to 5 ppm (median 455	
of 4 ppm) due to the temporal covariance between the coastal meteorology and exchange fluxes. The CO2 fluxes 

from coastal regions can be transported over the ocean and accumulated in the shallow boundary layer over the 

ocean. The shallow boundary layer is a characteristic of the marine atmosphere due to the less vertical mixing 

compared to land regions. Horizontal CO2 gradients can also be generated by the influence of highly varying 

biospheric fluxes under different advection patterns over the land and ocean boundary. A similar mechanism is 460	
applicable to mountain regions where temporal covariance of mountain-valley circulation and respired CO2 

fluxes are regulated by atmospheric radiation. The terrain-following coordinates as used in the model may also 

result in spurious tracer concentration gradients over the steep mountain terrain (Beck et al., 2020; Skamarock et 

al., 2021; Park et al., 2019). Though the mesoscale models are expected to perform better in simulating CO2 

variations over the complex terrain than the coarse models (e.g. Engelen et al., 2002; Gerbig et al., 2003; 465	
Ahmadov et al., 2007; Corbin et al., 2008; Lauvaux et al., 2009b; Pillai et al., 2011; Uebel et al., 2017; Agustí-

Panareda et al., 2019), they may also suffer from the inadequate representation of complex weather features and 

associated variability. We can also find individual cells with high representation errors associated with point 

emission sources such as cities, mining sites, and coal-fired power plants at different parts of the domain. The 

daily variations in surface representation errors are small within a month, although there exists a clear 470	
distinction between daytime and nighttime values (Figure not shown). The nighttime representation error is 

higher (e.g. a median value of 1.5 ppm for surface during November) compared to the daytime representation 

error (e.g. a median value of 1.1 ppm for surface during November) throughout the analysed domain. This is 

expected due to the coupling between nocturnal shallow transport and different flux processes accentuating local 

effects. During the nighttime, photosynthesis is absent, and respiration is the major biospheric activity, leading 475	
to an increase in CO2 concentration in the atmosphere. The large heterogeneity in flux distribution that is mostly 

from respired CO2 fluxes, the shallow boundary layer processes and the weak nocturnal turbulence cause CO2 to 

be accumulated locally near the surface with large variations. Compared to July, we find higher representation 

https://doi.org/10.5194/acp-2022-214
Preprint. Discussion started: 24 June 2022
c© Author(s) 2022. CC BY 4.0 License.



14	
	

error in November owing to the wintertime transport with decreased vertical mixing and heterogeneous 

biospheric uptake (see Fig. 4).  480	

In the case of XCO2, the magnitude of sub-grid scale variability is much smaller than that of surface CO2 (Fig. 

5), but it follows a similar spatial pattern. This confirms the dominance of surface-level processes in causing 

sub-grid variability of column averages. The sub-grid scale variability in XCO2 reaches up to 2 ppm in some 

parts of the region, especially where there are high variations in topographic features or point emission sources. 

The estimated column representation error is thus capable of causing significant biases in the satellite inferred 485	
CO2 fluxes over these regions. Also, the representation error for a large part of the domain is found to be above 

0.5 ppm, which is around half of the typical precision of current satellite measurements. Note that the 

representation error reported here is different from satellite measurement errors (e.g. spectroscopic retrieval 

error or sampling biases) and tends to be systematic in nature.  

Figure 6 shows the statistical distribution of the representation error (𝜎𝐶𝑂2) sampled over India, during July and 490	

November, separated by daytime and nighttime. July shows a median surface representation error of 0.9 ppm 

and 1.1 ppm during daytime and nighttime respectively, while November shows a median value of 1.1 ppm and 

1.4 ppm for daytime and nighttime respectively. In July, 95 % of the representation error is less than 2.1 ppm for 

daytime (3.9 ppm for nighttime) while it is 3 ppm for daytime (4.2 ppm for nighttime) for November. For 

column average, median values for representation error are 0.3 ppm and 0.4 ppm for July daytime and 495	
November daytime respectively.  

To further reduce the effect of random error that might be introduced by short-term weather phenomena, the 

representation errors (𝜎𝐶𝑂2(𝑚𝑜𝑛)
) are calculated from the monthly averaged CO2 field and are denoted as a 

systematic error (Fig. 6). Uncorrelated errors are expected to decrease when averaging over a sufficiently long 

period. As expected, the median values of the systematic representation errors are smaller for all cases, showing 500	
the effect of random errors. Especially for November when the cyclonic event was present, the values of the 

systematic errors (in the 95% percentile) for the surface CO2 are considerably lower than total errors, reducing 

from 3 ppm (daytime) and 4.2 ppm (nighttime) to 2.2 ppm (daytime) and 3 ppm (nighttime). In the case of 

column CO2, this reduction is from 1.1 ppm (daytime) and 0.9 ppm (nighttime) to 0.8 ppm (daytime) and 0.7 

ppm (nighttime) in the 95% percentile. In contrast to surface representation error (Fig. 6a), median values of 505	
nighttime representation errors are found to be slightly lower than daytime representation error for column 

average (Fig. 6b). To assess the dependence of representation error on possible horizontal resolutions of the 

global models, we have further derived the representation errors for different spatial resolutions between 0.5°  

and 4º. As expected, we see reductions in representation errors for both surface and column averaged CO2 with 

increasing horizontal resolution of the model (See Fig. 7 & supplementary Fig. S4). During July, the median 510	
surface representation error reduced from 1.6 ppm (2 ppm) to 0.6 ppm (0.7 ppm) during daytime (nighttime) 

while increasing horizontal resolution from 4º to 0.5º. This increment in spatial resolution has also resulted in 

similar error reductions in November during which the median of surface representation error shows a reduction 

from 2.4 ppm (2.8 ppm) to 0.7 ppm (0.9 ppm) during daytime (nighttime).  In the case of column-averaged 

values, the median representation error decreased from 0.7 ppm (0.6 ppm) to 0.25 ppm (0.2 ppm) during July 515	
daytime (nighttime) and from 0.95 ppm (0.9 ppm) to 0.25 ppm (0.2 ppm) during November daytime 
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(nighttime). The spatial distribution of representation errors for a model with a horizontal grid resolution of 

0.5°× 0.5° (e.g. regional models) is provided in Supplementary Figs. S5 and S6. On average, we find ~33 to 36 

% of decrease in daytime representation errors for both months when increasing model grid resolution from 1° 

to 0.5°. There exists a similar spatial pattern of representation errors for both resolutions of 0.5° and 1°. Though 520	
our results indicate a reduction of representation error for regional models with a typical resolution of 0.5° 

compared to global models with 1° spatial resolution, the emission hotspots and point sources are still 

pronounced with high sub-grid scale variability, especially during nighttime. The above analyses indicate that 

the sub-grid variability alone can produce significantly higher errors compared to the measurement errors (e.g., 

0.1 ppm as per WMO standards for surface measurements), which necessitates a proper treatment of these errors 525	
in models for the optimal estimation of CO2 fluxes.  

3.2.2 Vertical distribution 

Figure 8 shows the vertical profile of representation error distribution within different altitude bins. We find that 

the maximum representation error is in the surface layer, and most of the higher values are found to be within 

the lowest 4-6 km bins. Also, sub-grid scale variability decreases sharply with increasing altitude. This 530	
dominance of variability in surface concentration can be explained by surface flux heterogeneity influencing 

mole fractions in lower atmospheric layers (PBL) as described in van der Molen and Dolman (2007) and Pillai 

et al. (2010). There is a slight increase in representation error in the upper tropospheric levels near 12 to 14 km 

altitude range. This may be associated with the presence of strong circulations in the upper troposphere and 

lower stratosphere, such as subtropical westerly jets.  535	

3.3. Influence of terrain heterogeneity and flux variability on representation errors  

Here we explore the factors influencing the size and patterns of the representation error in coarse models. For 

this, statistical relationships between representation error and possible explanatory variables are examined for 

both surface and column-averaged CO2. Identifying these factors influencing representation errors and 

quantifying their local effects facilitate us to further investigate on how these biases in retrieved fluxes can be 540	
minimized in global models (see Sect. 3.5).  

We find a significant influence of terrain heterogeneity on representation error, which is evident from the spatial 

maps in Figs. 4 and 5, where the largest sub-grid scale variations are found in the Himalayan regions. Spatial 

variations in topography produce mesoscale circulation patterns and corresponding variations in atmospheric 

CO2 at fine scales. At the same time, there is a plausible additional error in global model simulations related to 545	
the insufficient resolution of vertical grids necessary to account for different surface influences (e.g. mountain 

vs valley). This effect of coarse vertical resolution is excluded in our representation error estimates by 

preserving the vertical grids used for the high-resolution simulations. To further explore the importance of using 

the high-resolution topography data on representing the CO2 variability, we analyse the dependence of terrain 

variations (as derived from the standard deviation of terrain height) on the distribution of the representation 550	
error. We have estimated the statistical dependence of topographic variability within the global climate models’ 

grids on corresponding representation error to estimate the relation between them. Topographic variability 

within 1° × 1° spatial box is estimated as the standard deviation of topography (m) for all 10 km  × 10 km   

boxes within the larger grid, and is denoted as 𝜎𝑡𝑜𝑝𝑜. Bins are created based on the values of this topographic 
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variability, in which different points from different parts of the domain are binned together on the basis of their 555	
standard deviation of topography. Each bin is created with a size of 50 m variation in terrain height. The linear 

fit is estimated between the average value of topographic variability within a bin and the average value of 

representation error of the corresponding points in the bin. Our results show that the terrain heterogeneity alone 

can explain about 20-48% of the surface representation errors over the domain. In a similar way, we have 

estimated the influence of topographic variability on representation error in the column-averaged model 560	
simulations. It is found that topography alone can explain 45-52 % of representation errors in the column-

averaged simulations.  

Further, we estimate the statistical relationship between the surface flux heterogeneity and representation error. 

The surface representation error is strongly linked to the biosphere flux variability, and the relationship between 

heterogeneity in biospheric surface flux (as derived from the standard deviation of VPRM-derived NEE fluxes, 565	
denoted as 𝜎𝑏𝑖𝑜) and representation errors depends on the time of the day and season. During daytime when 

there is strong ecosystem activity, the dependence of representation error (𝜎!!!) on 𝜎𝑏𝑖𝑜of surface and column 

CO2 is found to be ~75-80 % and ~66-74 % respectively. 𝜎𝑏𝑖𝑜 explains about 62% for the surface CO2 

variability and 48 % for the column variability during July nighttime. However, 𝜎𝐶𝑂2and 𝜎𝑏𝑖𝑜 are less correlated 

(23 % for surface and 19 % for column) during November nighttime. The diurnal difference in the dependence 570	
of 𝜎𝑏𝑖𝑜 on representation error can be explained by the increased magnitude and spatial variability of daytime 

biospheric fluxes in the growing season (primarily due to photosynthesis activities) compared to nighttime 

fluxes. Moreover, poor vertical mixing under the stable nocturnal atmospheric conditions with more advection 

and drainage flow reduces the influence of surface fluxes on spatial variability of mixing ratios. The dependence 

of representation error on the anthropogenic flux heterogeneity (as derived from the standard deviation of 575	
EDGAR fluxes, denoted as 𝜎𝑎𝑛𝑡) is found to be negligible except for nighttime (13–30 %). We find less 

influence of seasonality on the relationship between anthropogenic surface flux heterogeneity and representation 

errors (see Supplementary Table S1). Similar to the above analysis with 𝜎𝑏𝑖𝑜, the combined effect of 

atmospheric stability and flux heterogeneity can explain the diurnal differences of the relationship between 𝜎𝑎𝑛𝑡 

and 𝜎𝐶𝑂2 .  580	

In case of the variability of monthly averages, we see that 𝜎𝐶𝑂2(𝑚𝑜𝑛) is well explained by 𝜎𝑏𝑖𝑜 during daytime 

(see Supplementary Table S2), as expected.  A similar strong correlation can be seen between 𝜎𝐶𝑂2(𝑚𝑜𝑛) and 

𝜎𝑏𝑖𝑜 (23–69 %) during nighttime for surface variability of CO2, while there exists only less dependence of 

nocturnal column CO2 variability on local fluxes. This shows the decoupling of the mixing ratios in other parts 

of the column from the surface during the night due to less vertical mixing, combined with more drainage flow 585	
in the nocturnal boundary layer, which reduces the effect of surface flux variability on the column CO2 

variability. 
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In general, the above analysis underlines the need for using accurate Digital Elevation Models (DEMs) in the 

atmospheric transport models as one of the most critical datasets for determining the mesoscale atmospheric 

flows adequately. Further, the results also indicate the importance of utilising surface fluxes at high resolution. 590	

3.4 Estimation of NEE flux uncertainty due to representation error  

By following the assumptions and approach as given in Sect. 2.4, we have estimated the NEE flux uncertainty 

resulting from the representation errors. The results based on the OSSEs for nine observation sites are given in 

Table. 3. The scaling factors, which are calculated separately for each site by adjusting the prior fluxes using 

pseudo-observations, are applied to the VPRM monthly fluxes. The total NEE flux for India estimated by 595	
VPRM for July and November are -373.3 MtCO2 per month and -417.1 MtCO2 per month, respectively. The 

flux uncertainties over India that arise solely due to the contribution from the representation error are estimated 

to be 38.59 (daytime observations) to 30.14 (nighttime observations) MtCO2 per month (10.33% to 8.07%) for 

July and 18.42 (daytime observations) to 13.34 (nighttime observations) MtCO2 per month (4.4% to 3.1%) for 

November while utilizing data from nine observation stations. The maximum flux uncertainty was found for 600	
July due to the enhanced biosphere activity and unresolved convection activities. The estimated uncertainties are 

considerable for the carbon budget assessment especially given that these errors arise solely from the global 

models’ representation error. Note that calculated representation error does not include other transport error 

sources such as advection, convection or vertical mixing.  

3.5 Possible treatment of representation error in the global model 605	

The simplest possible way to minimize the uncertainty in flux estimation using a coarse model is to construct a 

parameterization model that can account for the representation error using explanatory variables. For this, we 

create a multivariate model to capture spatial patterns in the representation error. Employing this 

parameterization in a global model would thus redefine the likelihood of better estimates (improving the state of 

knowledge) with variance greater than that of the measurement error in the inverse framework by minimizing 610	
the modelling error. The multivariate linear model with explanatory variables that include sub-grid variations of 

terrain (𝜎𝑡𝑜𝑝𝑜), biospheric (𝜎𝑏𝑖𝑜) and anthropogenic (𝜎𝑎𝑛𝑡) fluxes remarkably captures the derived column 

representation error all over the Indian region during July daytime with a R2 value of 0.96 (Fig. 9). The 

difference between the modelled and derived representation error is found to be well below 0.5 ppm in most 

parts of the domain. Similarly, we have modelled the surface representation error using the linear model with 615	
these three explanatory variables and found that the proposed model could capture the derived surface 

representation error well with a deviation less than 1 ppm in most of the regions (see Supplementary Fig. S7 and 

Supplementary Table S1 and S2). More work is needed to demonstrate the extent of applicability of this method 

to minimize the flux uncertainties while utilizing actual observations. Nevertheless, the above finding provides a 

possibility for a parameterization that can be further developed in inverse models or data assimilation systems, 620	
which defines the degrees of freedom for describing the posterior states. Applying this parameterization scheme 

to the specific problem requires a high-resolution map of the terrain and prior information on anthropogenic and 

biogenic fluxes. The uncertainties in the topography can significantly impact flux estimation, and the likely 

reduction of flux uncertainty depends on the accuracy of the DEM employed. The caveat of this linear model is 

that the uncorrelated spatial variability in the prior and true states of the fluxes is ignored in the present form, 625	
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which cannot be the case for the real inverse problems. This assumption obviously hampers the system in 

achieving the maximum reduction in uncertainty, and further study is needed to refine this model from a 

practical perspective. We emphasise, however, that the above parameterization does not require a high-

resolution simulation of transport, which has high computational costs.  

4. Conclusion 630	

Given the upcoming availability of atmospheric observations over India, significant effort is required to 

critically enhance the modelling capabilities to derive carbon budgets over India within the definite confidence 

intervals and at scales relevant to the ecosystem and countrywide policy-making. The misrepresentation of 

mesoscale transport phenomena and unresolved flux variations in modelling systems operating on coarse grids 

hinders the optimal utilization of observations. In this context, the present study quantifies the spatial variability 635	
of atmospheric CO2 mixing ratio over India that is not resolved by the coarse models and assesses their impact 

on flux estimations. We demonstrate the potential of a simple parameterization scheme to model these 

unresolved variations in the coarse models for minimizing the uncertainty in retrieved fluxes.  

A large spread among global model simulations in representing monthly averaged CO2 concentration profiles 

indicates a considerable knowledge gap in the estimations of fluxes even at a monthly scale. It can be argued 640	
that a significant part of these differences arises due to the lack of observational constraints over India, which 

leads to a possible compensatory model artefact over this region in order to match the global mass constraint. At 

the same time, it is also expected that the spatial variability of the observed atmospheric CO2 mole fractions can 

be large so that these coarse models fail to represent them adequately. For instance, we find that the unresolved 

variations (representation error) of global models with a spatial resolution of 1° × 1° can be ~1.5 ppm on 645	
average for the surface CO2 that is even larger than the currently reported inter-global model differences. 

Similarly, the average representation error estimated for the column-averaged CO2 is ~1.1 ppm. These estimated 

values are larger than the corresponding measurement errors, which cause the inverse optimization to infer a 

state that is not close to the truth as is required in the regional CO2 budget for various applications.  

Coastal areas and mountains have particularly high representation errors (≈4 ppm for surface CO2). Emission 650	

hotspots can also lead to significant CO2 variability near the surface as large as ≈8 ppm. Larger values are 

typically associated with the nocturnal shallow boundary layer dynamics and the stronger respiration signal with 

considerable flux variability. These findings are consistent with Pillai et al. (2010), which show that there exist 

spatial differences in the sub-grid variability for both surface and column CO2. Although the magnitude of the 

sub-grid variability of the total column is an order of magnitude smaller than the variability at the surface, the 655	
spatial pattern remains similar for both, owing to the dominance of surface heterogeneity in topography and 

fluxes. With the underlying assumptions, the total uncertainty in optimized fluxes solely due to the unresolved 

sub-grid variations is estimated to be 3.1 to 10.3% of the total NEE while utilizing pseudo-data from nine 

observation stations over India. Increasing the spatial and temporal resolutions of the transport models can 

generally capture the mesoscale features and associated CO2 gradients, thereby reducing the representation 660	
error. Increasing the model’s resolution from 1° to 0.5° has shown an improvement in capturing variability with 

representation error reduction of 33% and 36% for summer time and winter time, respectively. By showing the 

existence of unresolved variability in 0.5° resolution with a similar spatial pattern of error as of 1° spatial 
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resolution, we demonstrate the need for a much finer resolution than 0.5° for representing the atmospheric CO2 

variability over India. However, merely increasing the resolution without having a realistic representation of 665	
terrain heterogeneity and flux (both natural and anthropogenic) variability would not be beneficial. The 

uncertainties in the high-resolution fluxes can worsen the model's skills, whose effect would not be more 

pronounced at coarser resolutions due to the diffusive nature of fluxes, as seen in Agustí-Panareda et al. (2019). 

A parameterization scheme with explanatory variables of sub-grid variations of terrain, biospheric and 

anthropogenic fluxes is shown to capture a considerable fraction of expected representation error in the global 670	
model. The proposed method is easy to implement in the coarse models as it does not require computationally 

expensive transport simulations at high resolution. As we see a significant dependence of the distribution of sub-

grid variability on terrain variations, our results reinforce the requirement for using accurate DEMs in the 

atmospheric transport models. The biosphere flux variability explains about 62 to 80% of the surface 

representation errors over the Indian region, indicating the need for using precise high-resolution surface fluxes.   675	

Overall, we show that the mesoscale transport mechanisms and flux variability contribute to fine-scale CO2 

variations that the current-generation models cannot resolve. Our findings indicate that the models need to be 

critically improved to capture mesoscale variations associated with horizontal and vertical transport and fine-

scale flux variability to maximize the potential of highly precise and accurate measurements. Our results provide 

a baseline for overcoming the shortcomings mentioned above and accounting for the realistic distribution of 680	
atmospheric CO2 to improve the estimation of surface fluxes through inverse modelling.	
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Figure 1: The WRF-GHG model domain used in this study, showing topography. The CO2 monitoring sites over 

India used for the OSSE experiments are marked. Not all these observation stations are currently fully operational. 1090	
The colour scale is restricted to 5000 m for the better visualization of terrain details over the Indian subcontinent.  
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	1095	
Figure 2: Comparison of global models over the model domain during daytime (11:30 to 16:30 local time) in 2017. a) 

Annually averaged vertical profiles of CO2 concentration in the lower troposphere b) Time series of monthly 

averaged CO2 concentration at surface (~100 m above surface).  

	
Figure 3: Comparison of average monthly vertical profiles of CO2 concentration from global atmospheric transport 1100	
models over the model domain during daytime (11:30 to 16:30 local time) in 2017. Panels show data for respective 

months as indicated on the top of each panel. 
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	1115	
Figure 4: Monthly averaged values of representation error estimated for surface CO2 concentration (second model 

level, mean height is ~200 m from sea level) over the region 8° N to 37° N and 68° E to 96° E during 2017. a) July 

daytime (11:30 to 16:30 local time) b) July nighttime (23:30 to 4:30 local time). c) November daytime. d) November 

nighttime. 

	1120	

	

https://doi.org/10.5194/acp-2022-214
Preprint. Discussion started: 24 June 2022
c© Author(s) 2022. CC BY 4.0 License.



33	
	

	

	

	

 1125	

 
Figure 5: Monthly averaged values of representation error estimated for column averaged CO2 concentration over 

the region 8° N to 37° N and 68° E to 96° E during 2017. a) July daytime (11:30 to 16:30 local time) b) July nighttime 

(23:30 to 4:30 local time). c) November daytime. d) November nighttime. 
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Figure 6: Variability of derived representation error over India in July and November 2017 (both during daytime 

and nighttime). Boxes indicate the central 50%, the bar across the box is the median value, and the whiskers indicate 

the values between 5 and 95 percentiles. Individual data points shown are the outliers. a) Representation error 

estimated for the surface CO2. b) Representation error estimated for the column averaged CO2. 1140	

 

 

 

Figure 7: Variability of derived surface representation error over India for different horizontal resolutions. Boxes 
indicate the central 50%, the bar across the box is median value, and the whiskers indicate the value between 5 and 1145	
95 percentiles. Individual data points shown are the outliers. a) Representation error estimated for July daytime. b) 
July nighttime. c) November daytime. d) November nighttime.  
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Figure 8: Variability of representation error over India with altitude for July and November 2017. a) July daytime, 

b) July nighttime, c) July full time, d) November daytime, e) November nighttime, and f) November full time. Median 

values are plotted with black curves and the shaded region indicates 25 to 75 percentiles of data.  
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Figure 9: Monthly averaged values of representation error estimated for column averaged CO2 concentration during 

July daytime (11:30 to 16:30 local time) in 2017. a) Representation error derived from WRF-GHG simulations as 

explained in Sect. 2.3. b) Representation error calculated from the multivariate linear model as described in Sect. 3.5. 

c) Difference between (a) and (b). 1160	
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Table 1: WRF-GHG Model setup 

 

Domain 

Configuration 

Vertical coordinates 

Basic equations 

Grid type 

Time integration 

Spatial integration 

Timestep 

Single domain with horizontal resolution of 10 km; 39 vertical levels; 307 × 407 grid points 

Terrain-following hydrostatic pressure vertical coordinates 

non-hydrostatic; compressible 

Arakawa-C grid 

3rd order Runge-Kutta split-explicit 

3rd and 5th order differencing for vertical and horizontal advection respectively; both for 

momentum and scalars 

60 s 

Physics schemes 

Radiation 

Microphysics 

PBL 

Surface layer 

Land-surface 

Cumulus 

Rapid Radiative Transfer Model (RRTM) for Longwave & Dudhia for shortwave                                                        

WSM 3-classic simple ice scheme 

YSU 

Monin-Obukhov 

NOAH LSM 

Grell-Freitas ensemble scheme 

Emission fields 

Flux type      Product    Version Spatial 
resoluti-
on 

Temporal 
resolution 

Source/website Reference 

Anthropogenic   
Biomass burning 
Biospheric  

EDGAR   

GFAS 

VPRM 

v4.3 

v1.2 

 

10km 

10km 

Adapted 
to model 

Annual 

Daily 

Adapted 
to model 

https://edgar.jrc.ec.europa.eu/ 

http://apps.ecmwf.int/datasets
/data/cams-gfas/ 

Crippa et al., 
(2018) 
Kaiser et al., 
(2012) 
Mahadevan et 
al., (2008) 

Initial and Lateral Boundary conditions 

Field Product Version Spatial 
resoluti-
on 

Temporal 
resolution 

Source/website Reference	

Meteorology 

Tracer 

ERA5 

ECMWF
/CAMS 

n/a 

gqiq 

25km 

50km 

1hour 

6hour 

https://cds.climate.copernicu
s.eu/cdsapp#!/home 
http://atmosphere.copernicus
.eu 

Hersbach et al., 
(2020) 

Agustí-Panareda 
et al., (2019) 
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Table 2: Specifications of different global model products used in this study 

Data availability 

Product          Version 
Spatial 
resolutio
n   

Vertical 
levels 

Temporal 
resolution Source/website   Reference 

Carbon 
Tracker  

CT2019B 3 × 2 25 3 hours http://carbontracker.noaa.gov Jacobson et 
al., (2020) 

CarboS
cope 

s10oc_v20
20   5 × 3.8 19 6 hours http://www.bgc-

jena.mpg.de/CarboScope/ 

Rödenbeck 
et al., 
(2003) 

LSCE v18r3  3.7 × 1.8 39 3 hours http://atmosphere.copernicus.eu 
Chevallier 
et al., 
(2019) 

LSCE FT18r1   3.7 × 1.8 39 3 hours http://atmosphere.copernicus.eu 
Chevallier 
et al., 
(2019) 

Data used in the inverse model simulations 

Product Version Forward 
Model 

Meteorol
ogy 

Observati
on data 

Anthropoge
nic emission 

fields 

Biospheri
c 
emission 

Fire 
emission 

Oceanic 
emission 

Carbon 
Tracker  CT2019B TM5 ECMWF Ground 

based 
Miller and 
ODIAC CASA 

GFED 
and 
GFED 
CMS 

OIF and 
Takahash
i et al., 
(2009) 

CarboS
cope  

s10oc_v20
20 TM3 NCEP Ground 

based EDGAR 
LPJ 
Biosphere 
Model 

CDIAC SOCAT 

LSCE/
PyVar  v18r3 LMDz6

A ECMWF Ground 
based 

EDGAR, 
CDIAC and 
GCP 

ORCHID
EE 
4.6.9.5 

GFED 
and 
GFAS 

Denvil-
Sommer 
et al., 
(2019) 
with 
updates 
described 
in 
Friedling
stein et 
al., 
(2019) 

LSCE/
PyVar  FT18r1 LMDz6

A ECMWF 
Satellite 
(OCO-2 
NASA) 

EDGAR, 
CDIAC and 
GCP 

ORCHID
EE 
1.9.5.2 

GFED 
and 
GFAS 

Landschu
tzer et al., 
(2018) 
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Table 3: Flux uncertainty over India calculated from the OSSE experiments using pseudo-observation network of 
surface observations. The time filter indicates the time of the data sampled for estimation of the scaling factors. Full 
day – 24 hours in each day; Daytime – 11:30 to 16:30 local time; Nighttime – 23:30 to 4:30 local time. * The fraction 1175	
of uncertainty to the total NEE.  

 

 

Month Time filter 

True flux, 
aggregated over 
India. 

𝚽𝒕𝒓𝒖𝒆
!
!!!  

(MtCO2 per 
month) 

Flux uncertainty 
𝐒𝒓𝒆𝒑 

(MtCO2 per 
month) 

In brackets: 
fraction of 
uncertainty* (%) 

July 
Daytime 
observations 

-373.31 

38.59 (10.33) 

July 
Nighttime 
observations 30.14 (8.07) 

July 
Full day 
observations 23.20 (6.21) 

November 
Daytime 
observations 

-417.12 

18.42 (4.4) 

November 
Nighttime 
observations 13.34 (3.1) 

November 
Full Day 
observations 13.48 (3.2) 
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